extension | φ:Q→Out N | d | ρ | Label | ID |
(C22xDic5).1C4 = C5:3(C23:C8) | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).1C4 | 320,26 |
(C22xDic5).2C4 = (C2xDic5):C8 | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).2C4 | 320,27 |
(C22xDic5).3C4 = M4(2):Dic5 | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).3C4 | 320,112 |
(C22xDic5).4C4 = M4(2).19D10 | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 80 | 8- | (C2^2xDic5).4C4 | 320,372 |
(C22xDic5).5C4 = C2xC4.12D20 | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).5C4 | 320,763 |
(C22xDic5).6C4 = (C2xC20):1C8 | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).6C4 | 320,251 |
(C22xDic5).7C4 = (C22xC4).F5 | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).7C4 | 320,252 |
(C22xDic5).8C4 = C22.F5:C4 | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).8C4 | 320,257 |
(C22xDic5).9C4 = C24.F5 | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).9C4 | 320,271 |
(C22xDic5).10C4 = C2xDic5.D4 | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).10C4 | 320,1098 |
(C22xDic5).11C4 = (C2xD4).9F5 | φ: C4/C1 → C4 ⊆ Out C22xDic5 | 80 | 8- | (C2^2xDic5).11C4 | 320,1115 |
(C22xDic5).12C4 = (C2xC40):15C4 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).12C4 | 320,108 |
(C22xDic5).13C4 = Dic5.14M4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).13C4 | 320,345 |
(C22xDic5).14C4 = Dic5.9M4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).14C4 | 320,346 |
(C22xDic5).15C4 = D5xC22:C8 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).15C4 | 320,351 |
(C22xDic5).16C4 = D10:7M4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).16C4 | 320,353 |
(C22xDic5).17C4 = C2xC20.8Q8 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).17C4 | 320,726 |
(C22xDic5).18C4 = C2xC40:8C4 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).18C4 | 320,727 |
(C22xDic5).19C4 = C2xD10:1C8 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).19C4 | 320,735 |
(C22xDic5).20C4 = M4(2)xDic5 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).20C4 | 320,744 |
(C22xDic5).21C4 = Dic5:5M4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).21C4 | 320,745 |
(C22xDic5).22C4 = D10:8M4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).22C4 | 320,753 |
(C22xDic5).23C4 = C22xC8:D5 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).23C4 | 320,1409 |
(C22xDic5).24C4 = C2xD5xM4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).24C4 | 320,1415 |
(C22xDic5).25C4 = C10.(C4:C8) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).25C4 | 320,256 |
(C22xDic5).26C4 = C2xC4xC5:C8 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).26C4 | 320,1084 |
(C22xDic5).27C4 = C2xC20:C8 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).27C4 | 320,1085 |
(C22xDic5).28C4 = Dic5.12M4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).28C4 | 320,1086 |
(C22xDic5).29C4 = C2xC10.C42 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).29C4 | 320,1087 |
(C22xDic5).30C4 = C4xC22.F5 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).30C4 | 320,1088 |
(C22xDic5).31C4 = C2xDic5:C8 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).31C4 | 320,1090 |
(C22xDic5).32C4 = C20.34M4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).32C4 | 320,1092 |
(C22xDic5).33C4 = Dic5.13M4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).33C4 | 320,1095 |
(C22xDic5).34C4 = C20:8M4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).34C4 | 320,1096 |
(C22xDic5).35C4 = C20.30M4(2) | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).35C4 | 320,1097 |
(C22xDic5).36C4 = C2xC23.2F5 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).36C4 | 320,1135 |
(C22xDic5).37C4 = C24.4F5 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 80 | | (C2^2xDic5).37C4 | 320,1136 |
(C22xDic5).38C4 = C23xC5:C8 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 320 | | (C2^2xDic5).38C4 | 320,1605 |
(C22xDic5).39C4 = C22xC22.F5 | φ: C4/C2 → C2 ⊆ Out C22xDic5 | 160 | | (C2^2xDic5).39C4 | 320,1606 |
(C22xDic5).40C4 = C2xC8xDic5 | φ: trivial image | 320 | | (C2^2xDic5).40C4 | 320,725 |
(C22xDic5).41C4 = D5xC22xC8 | φ: trivial image | 160 | | (C2^2xDic5).41C4 | 320,1408 |